Mount Saint Helen’s Crystals Predict the Past

Scientific American reports that a team in England and Germany are using crystallized minerals formed in the volcano just before eruption to determine a timeline of volcanic activity, and possibly predication from a study in the May 25 issue of Science.

…the researchers report that crystals of the silicate mineral orthopyroxene from 1980 and from subsequent eruptions trace various injections of magma, as well as other chemical changes, within the bowels of the volcano.

The crystals contain concentric rings of differing chemical composition. Some orthopyroxene crystals, for instance, have a magnesium-rich core surrounded by an iron-rich rim; others have an iron-rich core and a magnesium-rich rim. Each type of crystal zonation can record the conditions of the magma reservoir from which it emerged.

“We chemically fingerprint each of those zones to determine how they formed,” says lead study author Kate Saunders, a volcanologist of the University of Bristol in England. The outer rim of an orthopyroxene crystal, she says, represents the most recent stage of crystal formation and typically grew just months before the crystal’s emergence in volcanic ejecta. That allowed the researchers to make precise estimates of when, and how, the crystals acquired their chemical forms. “Mount Saint Helens is really good—because the samples, we know exactly when they erupted,” Saunders says.

They hope that the study of these crystals will corroborate and offer insight into the historical timeline of erruptions, something researchers today can only guesstimate.

For more information, see “What’s the Point of Volcano Monitoring?” from Scientific American and “Linking Petrology and Seismology at an Active Volcano” from Science.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s